Sunday, December 19, 2010

Electromechanical Energy Conversion Principles

In electromechanical systems, energy is stored in magnetic and electric fields. When the energy in the field is influenced by the configuration of the mechanical parts constituting the boundaries of the field, mechanical forces are created which tend to move the mechanical elements so that energy is transmitted from the field to the mechanical system.
Singly excited magnetic systems are considered first in Section 3.3. By removing electric and mechanical loss elements from the electromechanical-energy-conversion system (and incorporating them as loss elements in the external electrical and mechanical systems), the energy conversion device can be modeled as a conservative system. Its energy then becomes a state function, determined by its state variables i and x or (teta) . Section 3.4 derives expressions for determining the force and torque as the negative of partial derivative of the energy with respect to the displacement, taken while holding the flux-linkage )~ constant. In Section 3.5 the state function coenergy, with state variables i and x or 0, is introduced. The force and torque are then shown to be given by the partial derivative of the coenergy with respect to displacement, taken while holding the current i constant. These concepts are extended in Section 3.6 to include systems with multiple windings. Section 3.7 further extends the development to include systems in which permanent magnets are included among the sources of the magnetic energy storage.
Energy conversion devices operate between electric and mechanical systems. Their behavior is described by differential equations which include the coupling terms between the systems, as discussed in Section 3.8. These equations are usually nonlinear and can be solved by numerical methods if necessary. As discussed in
Section 3.9, in some cases approximations can be made to simplify the equations.
For example, in many cases, linearized analyses can provide useful insight, both with respect to device design and performance. This chapter has been concerned with basic principles applying broadly to the electromechanical-energy-conversion process, with emphasis on magnetic-field systems.
Basically, rotating machines and linear-motion transducers work in the same way. The remainder of this text is devoted almost entirely to rotating machines. Rotating machines typically include multiple windings and may include permanent magnets. Their performance can be analyzed by using the techniques and principles developed in this chapter.




1 Magnetic Circuits and Magnetic Materials
2 Transformers
3 Electromechanical Energy Conversion Principles
4 Introduction to Rotating Machines
5 Synchronous Machines
6 Polyphase Induction Machines
7 DC Machines
8 Variable-Reluctance Machines and Stepping Motors
9 Single- and Two-Phase Motors
10 Introduction to Power Electronics
11 Speed and Torque Control
Appendix A Three phase circuits
Appendix B Voltages, Magnetic Fields, and Inductances of Distributed AC Windings
Appendix C The dq0 Transformation
Appendix D Engineering Aspects of Practical Electric Machine Performance and Operation
Appendix E Table of Constants and Conversion

No comments:

Post a Comment