One theme of this chapter is a continuation of the induction-machine theory of Chapter 6 and its application to the single-phase induction motor. This theory is expanded by a step-by-step reasoning process from the simple revolving-field theory of the symmetrical polyphase induction motor. The basic concept is the resolution of the statormmf wave into two constant-amplitude traveling waves revolving around the air gap at synchronous speed in opposite directions. If the slip for the forward field is s, then that for the backward field is (2 - s). Each of these component fields produces induction-motor action, just as in a symmetrical polyphase motor. From the viewpoint of the stator, the reflected effects of the rotor can be visualized and expressed quantitatively in terms of simple equivalent circuits. The ease with which the internal reactions can be accounted for in this manner is the essential reason for the usefulness of the double-revolving-field theory.
For a single-phase winding, the forward- and backward-component mmf waves are equal, and their amplitude is half the maximum value of the peak of the stationary pulsating mmf produced by the winding. The resolution of the stator mmf into its forward and backward components then leads to the physical concept of the singlephase motor described in Section 9.1 and finally to the quantitative theory developed in Section 9.3 and to the equivalent circuits of Fig. 9.11. In most cases, single-phase induction motors are actually two- hase motors with unsymmetrical windings operated off of a single phase source. Thus to complete our understanding of single-phase induction motors, it is necessary to examine the performance of two-phase motors. Hence, the next step is the application of the double-revolving-field picture to a symmetrical two- hase motor with unbalanced applied voltages, as in Section 9.4.1. This investigation leads to the symmetricalcomponent concept, whereby an unbalanced two-phase system of currents or voltages can be resolved into the sum of two balanced two-phase component systems of opposite phase sequence. Resolution of the currents into symmetrical-component systems is equivalent to resolving the stator-mmf wave into its forward and backward components, and therefore the internal reactions of the rotor for each symmetricalcomponent system are the same as those which we have already investigated. A very similar reasoning process, not considered here, leads to the well-known three-phase symmetrical-component method for treating problems involving unbalanced operation of three-phase rotating machines. The ease with which the rotating machine can be analyzed in terms of revolving-field theory is the chief reason for the usefulness of the symmetrical-component method. Finally, the chapter ends in Section 9.4.2 with the development of an analytical theory for the general case of a two-phase induction motor with unsymmetrical windings. This theory permits us to analyze the operation of single-phase motors running off both their main and auxiliary windings.
1 Magnetic Circuits and Magnetic Materials
2 Transformers
3 Electromechanical Energy Conversion Principles
4 Introduction to Rotating Machines
5 Synchronous Machines
6 Polyphase Induction Machines
7 DC Machines
8 Variable-Reluctance Machines and Stepping Motors
9 Single- and Two-Phase Motors
10 Introduction to Power Electronics
11 Speed and Torque Control
Appendix A Three phase circuits
Appendix B Voltages, Magnetic Fields, and Inductances of Distributed AC Windings
Appendix C The dq0 Transformation
Appendix D Engineering Aspects of Practical Electric Machine Performance and Operation
Appendix E Table of Constants and Conversion
No comments:
Post a Comment